Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
نویسندگان
چکیده
Ž . Principal component analysis PCA is the most commonly used dimensionality reduction technique for detecting and diagnosing faults in chemical processes. Although PCA contains certain optimality properties in terms of fault detection, and Ž . has been widely applied for fault diagnosis, it is not best suited for fault diagnosis. Discriminant partial least squares DPLS has been shown to improve fault diagnosis for small-scale classification problems as compared with PCA. Fisher’s discrimiŽ . nant analysis FDA has advantages from a theoretical point of view. In this paper, we develop an information criterion that automatically determines the order of the dimensionality reduction for FDA and DPLS, and show that FDA and DPLS are more proficient than PCA for diagnosing faults, both theoretically and by applying these techniques to simulated data collected from the Tennessee Eastman chemical plant simulator. q 2000 Elsevier Science B.V. All rights reserved.
منابع مشابه
Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor
Tool fault diagnosis in numerical control (NC) machines plays a significant role in ensuring manufacturing quality. However, current methods of tool fault diagnosis lack accuracy. Therefore, in the present paper, a fault diagnosis method was proposed based on stationary subspace analysis (SSA) and least squares support vector machine (LS-SVM) using only a single sensor. First, SSA was used to e...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملClassification of Hungarian medieval silver coins using x-ray fluorescent spectroscopy and multivariate data analysis
Background: A set of silver coins from the collection of Déri Museum Debrecen (Hungary) was examined by X-ray fluorescent elemental analysis with the aim to assign the coins to different groups with the best possible precision based on the acquired chemical information and to build models, which arrange the coins according to their historical periods. Results: Principal component analysis, line...
متن کاملPLS discriminant analysis for functional data
Partial least squares regression on functional data is applied in the context of linear discriminant analysis with binary response. The discriminant coefficient function is then used to compute scores which allow to assign a new curve to one of the two classes. The method is applied to gait data and the results are compared with those given by linear discriminant analysis and logistic regressio...
متن کامل